# Testing Used Respirator Cartridges to Confirm Change Schedules

C.R. (Gus) Manning, PhD, CIH, FAHIA

## Acknowledgement (Mentors)

Gary O. Nelson

- Experimental service life studies
- Gerry O. Wood
  - Service life theory
- Jim Johnson
  - Respirator General Practice

# What is Happening when you wear an Air Purifying Respirator (APR)



IDLH = immediately dangerous to life & health; OEL = Occupational Exposure Limit

# Service Life

Duration of Time a respirator may be worn before contaminant breakthrough exceeds the OEL\*

Change Schedule should be based on Hypothetical Service Life plus a safety factor

**Hypothetical** Service Life is a Projection based on relevant data and theory.

\* OEL = Occupational Exposure Limit



... Can be measured accurately in the Lab under hypothetical environmental conditions, but ...

Real-World Service Life depends upon the environmental conditions in use.

i.e., Actual Service Life depends upon actual use

### Hypothetical Service Life as determined in a Lab



### OSHA Suggests Options for Developing a Change Schedule (OSHA web-site)

Measure Experimentally with Lab Test ... in practice, a model is often used because influent concentration is low and test time is long

> Follow Manufacturer Recommendation ... Mfr Recomendation usually based on a Model

> > Use a Mathematical Model ... NIOSH "Multi-Vapor" is the Most Popular Model

## In Actual Practice You get a hypothetical Service Life by combining ...

Lab Service Life Determinations

A Mathematical Model

Estimated Environmental Conditions

**Caveat:** The overall error of your estimate is a summation of errors in each operation.

## Projected Service Life (estimate of errors)

### Error due to

- Lab Determination
- Math Model approximations
- Data input into the Math Model
  - Capacity Data for Cartridge Used
  - Environmental Challenge Conditions

### Factors Entered into Model

expected ....

Contaminant Concentration (ppm) Work Rate (breathing rate in L/min)

Plus expected ... temperature humidity wearing time Size and Nature of Sorbent in Cartridge

Model

Projected Service Life

### Size and Nature of Sorbent in Cartridge

must also be entered into the Model

If you don't select a standard cartridge from the menu, model will need the following information:

Carbon Bed Diameter & Depth (cm) Weight of sorbent in each cartridge (gm) The carbon micropore volume (cm3/g) Carbon granule size (ave. diameter in cm) Carbon's Adsorption Potential for Benzene Carbon's Affinity Co-Efficient for Water %RH at which Cartridge has been pre-conditioned

Model
Projected Service Life

### Factors Related to Contaminant(s) must be entered into Model

If your contaminant is not on the Menu, the Model will need the following:

> Molecular weight Liquid density (g/cm3) Water Solubility Factor Vapor Pressure Co-efficients (Antoine co effs) Molar polarizability (cm3/ mole)

> > Model
> > Projected Service Life

## Projected Service Life (for setting Change Schedule)

Accurate Projections available to sophisticated organizations

Most Rely on Respirator Mfr recommendations

- Approximate fitting to Math Model
- Many parameters estimated
- If no data ... no recommendation

### Projected Service Life (resulting Change Schedule)

Competent Leading Company IH Mgr

 Uses Worst-Case estimates & Safety Factors
 Safe Employees
 Discard cartridges with un-used capacity

 Untrained non-Leading Company IH Mgr

 Not using Worst Case Inputs & Safety Factors
 Unsafe Employees
 May use Cartridges after capacity is expended

In the event that you are not completely satisfied with your projected Service Life & Change Schedule ...

Are there other ways to get improved confidence in your Respirator Change Schedules?

### End of Service Life (ESL) ... is the moment when Effluent Contaminant Level approaches the OEL

End of Service Life Indicator (ESLI): Provides alternate method for an END-USER to detect the ESL End of Service Life Indicators (ESLI) (appeal of)

The end-user does not need to: (a) Know too Much (b) Think too much (c) Do too much

### End of Service Life Indicators (current design approaches)

### A Sensor is placed ON the Cartridge

- Alarm Based on Time-Weighted Average Exposure



#### A Sensor is placed INSIDE the Cartridge

- Alarm Based on Instantaneous Concentration



### **End of Service Life Indicators**

 The Sensor must be inexpensive and selective for all Agents claimed for that cartridge

So, ESLI are not yet widely available.

# Could There Be Another Approach to Detecting the End of Service Life ?

Doesn't require detailed knowledge about the use environment and the sorbent.

Doesn't require a super-selective sensor that is cheap enough to be thrown away with each cartridge use?

# Measure the "Residual Capacity" of Cartridge

## Residual Capacity

 the adsorptive or chemical capacity remaining after normal respirator use



# Laboratory Method A

Residual Capacity Test using "suspected" contaminant

### Perform a Destructive Test on a "used" Cartridge

- After wearing the respirator
  - Follow an established change schedule, select cartridges from each "similar exposure group", send "used" cartridges to Lab for Challenge Test
    - Run NIOSH-style Challenge Test on "used" cartridges
    - If cartridges have retained > 10% of capacity,
      - Change Schedule has been confirmed

Effective Service Life (remaining time to breakthrough) decreases as Capacity is consumed



Effective Service Life (remaining time to breakthrough) decreases as Capacity is consumed



### Cost of Lab Method A (Destructive Test of "used" Cartridges)

 Single (SEG) Similar Exposure Group \$950 (USD) for testing 3 used cartridges in Lab

Three (SEGs) Similar Exposure Groups \$1,950 (USD) for testing 9 used cartridges in Lab

## Simple Lab Method "B"

Residual Capacity Test using "surrogate" Contaminant

### Non-Destructive Test on a "used" Cartridge

- After wearing the respirator
  - Follow established change schedule, select cartridges from each "similar exposure group", and send "used" cartridges for Challenge Test
    - Run non-destructive Challenge Test
      - Using surrogate agent
      - E.g., Methane or Carbon Dioxide
    - If cartridges have retained > 10% of capacity,
      - Change Schedule has been validated

### Simple Lab Method B Non-Destructive Test using "surrogate" contaminant

Inject Pulse of Surrogate Agent into "used" Cartridge

 Measure Passage Time thru Cartridge
 Retention Time Correlates with Residual Capacity

 N. Bac , A. Sacco, & J.L. Hammarstrom, 1983, Measurement of the Adsorption Capacity of Charcoal Filters under Conditions of Variable Humidity Chem. Eng. Comm., 24:4-6, 205-213

### N. Bac , A. Sacco, & J.L. Hammarstrom Experimental Design



FIGURE 1 Schematic of the test apparatus.

## Simple Lab test B for Residual Capacity



### N. Bac, A. Sacco, & J.L. Hammarstrom Experimental Data



FIGURE 2 Correlation between the reduced retention time of CH4 and the percent relative humidity. (Filters at equilibrium water loadings.)

# **Test Retention Time**

correlates with Capacity Used



# Test Retention Time

correlates with Capacity Remaining



## Conclusions

- Uncertainty in projected Service Life arises when users lack accurate data to input into models to generate Service Life/Change Schedules.
- End of Service Life Indicators have advantage of requiring little input from end-users, but ESLIs are still rare.

Measuring Residual Capacity to detect End of Service Life, has advantages:

- Applicable to a wide variety of real-world situations
- No need to modify respirator by installing exotic sensors.
- Residual Capacity testing may be conducted using

   (a) actual expected contaminants (expensive, destructive test)
   (b) surrogate contaminant (cheap, non-destructive test)

## AT Respirator and Filter Chemical Challenge Test Lab



### Assay Technology Facility (Livermore, California)

