A Simple Air Monitoring Plan for Respirator Selection & Use

C.R. Manning, PhD, CIH, FAIHA Chief Technical Officer M.D.R. Peralta, PhD Technical Director

Assay Technology operates accredited testing labs and manufactures personal monitoring badges

Respirators Reduce Exposure but Don't Remove All Contaminants

What is Happening when you wear an Air Purifying Respirator

APR = Air Purifying Respirator;APF = Assigned Protection FactorIDLH = immediately dangerous to life & health;PEL = OSHA Permissible Exposure Limit

Assigned Protection Factor (assigned by OSHA)

$APF = C_o / C_i = 10, 25, 50, 1000, etc.$

C_o = Concentration Outside Mask
 C_i = Contaminant Concentration Inside Mask

A Protection Factor is an estimated contaminant Reduction Factor assigned by OSHA as a "worst case".

It is the ratio of the contaminant level outside the mask, compared to the contaminant level inside the mask.

(OSHA Rules)

Maximum Use Concentration (MUC) MUC = PEL X APF

Where:

PEL = OSHA Permissible Exposure Limit (ppm) APF = Assigned Protection Factor

Except:

MUC can never exceed the NIOSH IDLH (in ppm) IDLH = Immediately Dangerous to Life and Health

Respirators You Can Use

Respirator Type	APF	MUC
Half Mask APR	10	<u><</u> 10 x PEL
PAPR	25	<u><</u> 25 x PEL
Full Face Piece APR	50	<u><</u> 50 x PEL
Air Supplied Respirator	1000	<u>< 1000 x PEL</u>

APR = Air Purifying Respirator; PAPR = Powered Air Purifying Respirator APF = Assigned Protection Factor PEL = OSHA Permissible Exposure Limit

Performance and Cost

Respirator Type	APF	Cost/Emp/Mo	
Half Mask APR	10	\$450	
PAPR	25	\$3,000	
Full Face Piece APR	50	\$ 500	
Air Supplied Respirator	1000	\$5,000	

APR = Air Purifying Respirator; PAPR = Powered Air Purifying Respirator APF = Assigned Protection Factor PEL = OSHA Permissible Exposure Limit

Maximum Use Concentrations for Several Respirators & Solvents

Air Monitors & Respirators are closely connected

Air Purifying Respirators

 Reduce Air Contaminants
 by a REDUCTION FACTOR

Air Monitors

 Identify Air Contaminants
 Measure Contaminant Levels

Exposure Assessment (required by OSHA)

Can Tell You 2 Things – Which Respirator you May Use – How Long you May Wear it

Exposure Assessment Methods

- Air Monitoring
- Math Models
- Guessing

Exposure Assessment Methods (allowed by OSHA)

Exposure Assessment Methods

- Air Monitoring
- Math Models

Guessing

In Favor of Air Monitoring

- More Accurate Than Modeling/Guessing
- More Cost-Effective & Convenient

Part II Personal Air Monitors

120+ Organic Vapors

Formaldehyde & other Aldehydes

Amines, Anesthetics EtO, Ozone, Acrolein, NO2, SO2, NH3, Hg,

The most cost-effective and convenient method for monitoring workers' chemical exposure.

Air Monitoring Value Proposition A

Air Monitoring Data
 Tells you which Respirator you may use

 Finding of Lower Contaminant Levels justifies a less burdensome Respirator
 More Cost-Effective & Convenient Respiratory Protection

Value Prop A Case 1

Based on a Model, benzene exposure levels in a facility are estimated at 15-20 ppm.

 The MUC for a Half-Mask APR is only 10 ppm, so a Full-Face Piece APR or PAPR must be used

 Subsequent Air Monitoring determines actual daily exposure levels of 5 <u>+</u> 3 ppm of benzene
 Half-Mask APR may now be used

Maximum Use Concentrations for Several Respirators & Solvents

Value Prop A Case 2

- 2-butanone (MEK), an ingredient in ink jet printing, may be present at high levels where multiple printers are used. Due to a low odor threshold, its concentration is often overestimated.
 - Due to an exposure overestimate, cumbersome expensive PAPRs are in routine use.
- Air Monitoring establishes that daily exposure levels near printers are actually 200 <u>+</u> 100 ppm.
 <u>– Half-Mask APRs may now be used.</u>

Maximum Use Concentrations for Several Respirators & Solvents

Respirator Change Schedules

(from OSHA web-site)

Did you know that employers are now required to provide a respirator cartridge change schedule?

Respirator cartridges don't last forever!

A change schedule is the part of the written respirator program which says how often cartridges should be replaced ... The service life of a cartridge depends upon many <u>factors</u>, including environmental conditions, breathing rate, cartridge filtering capacity, and the **amount of contaminants** in the air.

Service Life Calculators

Available from Mfr On-Line

 You Enter Data
 Respirator ID, Temp, %RH, Breathing Rate
 Expected Contaminant and Its Concentration

Calculator Predicts Service Life

 Higher Contaminant Level
 Shorter Service Life
 Lower Contaminant Level
 Longer Service Life

Effect of Air Concentration on Predicted Service Life

	Predicted Service Life (hours)				
	TWA Air Concentration	Benzene	2-Butanone	Xylene	
Exposure Limit (PEL) (ppm) 1 200			200	100	
	25	<mark>62</mark>			
	75	26		46	
	100	20		38	
	250	9.0	9.0	16	
	500	5.1	5.4	7.9	
	750	3.6	3.9	5.3	
Typical Air Purifying Respirator e.g3M 6001 Org Vapor Cartridge					

Air Monitoring Value Proposition B

Air Monitoring Data – Predicts Respirator Service Life

 Finding Lower Contaminant Levels Justifies Longer Service Life
 Conserving Respiratory Protection resources.

Value Prop B Case 1

Using a Model, xylene exposure levels in a facility have been estimated at 500+ ppm

 Based on the 3M Service Life Calculator, a schedule of changing cartridges each day was adopted.

Air Monitoring establishes that daily exposure levels are actually within 150 <u>+</u> 50 ppm xylene.

 Schedule can now be modified to change every other day using 3M Calculator.

Effect of Air Concentration on Predicted Service Life

	Predicted Service Life (hours)				
	TWA Air Concentration	Benzene	2-Butanone	Xylene	
Exposure Limit (PEL) (ppm) 1 200			200	100	
	25	<mark>62</mark>			
	75	26		46	
	100	20		38	
	250	9.0	9.0	16	
	500	5.1	5.4	7.9	
	750	3.6	3.9	5.3	
Typical Air Purifying Respirator e.g3M 6001 Org Vapor Cartridge					

Value Prop B Case 2

- In a special refinery operation, benzene exposures have historically been 500 ppm or higher.
 - Based on the 3M Calculator, respirator cartridges must be changed every 4 hours.
- After engineering changes are made, subsequent Air Monitoring demonstrates that daily exposure levels are actually 100 <u>+</u> 50 ppm of benzene
 - Based on the Calculator, respirator cartridges now need only be changed daily.

Personal Air Monitors

The most cost-effective and convenient method for monitoring workers' chemical exposure.

Conclusion

Personal Air Monitoring provides a more scientific approach to using Respirators

- Air Monitoring data can justify selection of a more cost-effective & convenient respirator.
- Air Monitoring data can justify change schedules that conserve respiratory protection resources.

Finis

Thanks for attending. Feel free to contact either of us with any questions.

Maria Peralta <u>mperalta@assaytech.com</u>
 Gus Manning <u>gmanning@assaytech.com</u>

www.assaytech.com

CM1 Charles Manning, 5/8/2020